References

Corbridge, D. E. C. (1975). The Chemistry of Phosphorus, p. 262. London: Elsevier.
Coulter, L. L. (1975). J. Am. Chem. Soc. 97, 4084-4088.
Dutasta, J. P., Grand, A., Robert, J. B. \& Taieb, C. (1974). Tetrahedron Lett. 31, 2659-2662.
Garcia-Blanco, S. \& Perales, A. (1972). Acta Cryst. B28, 2647-2652.
Grand, A. \& Robert, J. B. (1978). Acta Cryst. B34, 199204.

Ismail, R. (1975). German Patent No. 1,543,539.

Jones, P. G., Edwards, M. R. \& Kirby, A. J. (1986). Acta Cryst. C42, 1368-1369.
Leopardi, C. P., Germain, A., DeclercQ, J.-P., Meerssche, M. V., Robert, J. B. \& Jurkschat, K. (1982). Acta Cryst. B38, 2197-2199.
Nardelli, M. (1983). J. Comput. Chem. 7, 95-98.
Nuffel, P. V., Lenstra, A. T. H. \& Geise, H. J. (1981). Acta Cryst. B37, 133-136.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 1432-1434

Structural Investigations of Benzo[c]cinnoline Derivatives. III. Structure of 2-Fluorobenzo[c]cinnoline

By Tuncer Hökelek
Department of Physics, Hacettepe University, 06532 Beytepe, Ankara, Turkey

(Received 24 October 1989; accepted 16 October 1990)

Abstract

C}_{12} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~F}, M_{r}=198 \cdot 20\), monoclinic, $\mathrm{C} 2 / c$, $a=11 \cdot 296$ (4), $b=8.471$ (3), $c=18.889$ (2) $\AA, \beta=$ $98.83(2)^{\circ}, V=1786.0$ (2) $\AA^{3}, Z=8, D_{m}=1.45, D_{x}=$ $1.474 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54180 \AA, \mu(\mathrm{Cu} K \alpha)=$ $8.284 \mathrm{~cm}^{-1}, F(000)=816, T=293 \mathrm{~K}, R=0.051$ for 1378 observed unique reflections $[I \geq 3 \sigma(I)$]. The rings in the benzo $[c]$ cinnoline skeleton are close to planar. with dihedral angles of $0.45(7)-1 \cdot 17(8)^{\circ}$. The F atom is located 0.004 (3) \AA from the least-squares plane of the benzenoid ring.

Introduction. Benzo[c]cinnoline and some of its derivatives have mutagenic (Leary, Lafleur, Liber \& Blemann, 1983), antirheumatic (Matter, 1957; Erlenmeyer, 1958) and carcinogenic (Ashby, Styles \& Paton, 1980) physiological activities. They have also been used as bleach catalysts in the processing of photograph silver-dye bleach materials (Jan, 1980). The structures of benzo[c]cinnoline (van der Meer, 1972), 1-morpholinobenzo[c]cinnoline (Hökelek, Watkin, Kılı̧ \& Tüzün, 1990), 1- and 3-piperidinobenzo[c]cinnoline (Hökelek, Kılıç \& Tüzün, 1991a) and 2- and 4-pyrrolidinobenzo[c]cinnoline (Hökelek, Kılıç \& Tüzün, 1991b) have previously been reported. The structure determination of the title compound was undertaken to study the effects of changing the types and positions of the substituents.

Experimental. The title compound was dissolved in ethanol. The clear solution was cooled slowly at
room temperature. In about two days, yellow rodshaped crystals were obtained. Experimental data, the method used to solve the structure and other related data and procedures are given in Table 1. Non-H atoms were included with anisotropic displacement parameters. Since difference syntheses did not clearly show the positions of the H atoms they were placed in calculated positions at a distance of $1.079 \AA$ from the corresponding C atoms with coordinates and isotropic displacement parameters taken as 1.3 times the corresponding displacement parameters of the connecting non -H atoms.

Discussion. The final coordinates and equivalent isotropic thermal parameters are given in Table 2.* The molecular structure with the atom-numbering scheme is shown in Fig. 1. Bond lengths and angles are given in Table 3. The benzo[c]cinnoline skeleton is close to, but not exactly, planar, as can be seen from the dihedral angles $\alpha-\beta=1 \cdot 17$ (8), $\alpha-\gamma=0.50$ (7) and $\beta-\gamma=0.45$ (7) ${ }^{\circ}$ between rings $\alpha(\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13), \beta(\mathrm{C} 5, \mathrm{~N} 6$, $\mathrm{N} 7, \mathrm{C} 8, \mathrm{C} 13, \mathrm{C} 14)$ and $\gamma(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 14)$ in Fig. 1.

[^0]Table 1. Experimental data and structure-refinement parameters

The dihedral angle between the benzenoid rings is 2.5° in benzo[$\left.c\right] c$ cinnnoline (van der Meer, 1972), 11.7° in 1-morpholinobenzo[c]cinnoline (Hökelek, Watkin, Kıllç \& Tüzün, 1990), 14.32 (6), 3.4 (1) ${ }^{\circ}$ (molecule A) and $1.8(1)^{\circ}$ (molecule B) in 1- and 3-piperidinobenzo $[c]$ cinnoline (Hökelek, Kılıç \& Tüzün, 1991a), 1.32 (6) and $4.95(7)^{\circ}$ in 2 - and $4-$ pyrrolidinobenzo[c]cinnoline (Hökelek, Kılıç \& Tüzün, 1991b), respectively.
The values of these dihedral angles depend on the steric interactions between the benzo[$c]$ cinnoline skeleton and the substituents. The interaction is greatest with the substituents in the 1-position. These steric interactions are also clearly seen from the dihedral angles between ring β and the substituent group depending on the types and position of the substituents (van der Meer, 1972; Hökelek, Watkin, Kılıç \& Tüzün, 1990; Hökelek, Kılı̧̧ \& Tüzün, 1991a,b).

The steric interactions between the H atoms at C 12 and Cl generates enlarged $\mathrm{C} 12-\mathrm{C13-C14} \mathrm{and}$ $\mathrm{C} 13-\mathrm{C} 14-\mathrm{Cl}$ angles and smaller angles at the opposite side of the benzo $[c]$ cinnoline group (see

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cl	9806 (3)	2142 (4)	5578 (2)	438 (17)
C2	9829 (3)	1556 (4)	6248 (2)	504 (19)
C3	9085 (3)	361 (4)	6430 (2)	549 (20)
C4	8269 (3)	-287 (4)	5897 (2)	508 (19)
C5	8195 (2)	292 (3)	5192 (2)	413 (16)
N6	7327 (2)	-404 (3)	4683 (1)	495 (16)
N7	7208 (2)	35 (3)	4022 (1)	485 (15)
C8	7930 (2)	1219 (3)	3810 (2)	401 (16)
C9	7737 (3)	1626 (4)	3078 (2)	479 (18)
C10	8405 (3)	2788 (4)	2829 (2)	518 (19)
Cl 1	9285 (3)	3591 (4)	3307 (2)	505 (19)
C 12	9489 (2)	3210 (3)	4023 (2)	424 (16)
Cl 3	8812 (2)	2007 (3)	4289 (1)	365 (14)
C14	8956 (2)	1505 (3)	5022 (1)	366 (14)
F15	643 (2)	2165 (3)	6786 (1)	780 (15)

Table 3. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Fig. 1. A SNOOPI (Davies, 1983) drawing of the title molecule with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Table 3). This effect is in accordance with what was found in benzo[c]cinnoline, 1-morpholinobenzo[c]cinnoline, 1- and 3-piperidinobenzo[$c]$ cinnoline and 2- and 4-pyrrolidinobenzo[c]cinnoline. The F atom is located 0.004 (3) \AA from the least-squares plane of the benzenoid ring.

The bond lengths $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 3-\mathrm{C} 4, \mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 11-\mathrm{C} 12$ are generally shorter than the other bonds, as can be expected from theorectical calculations (Mulliken, 1955; Hoffman, 1963). This has also been determined experimentally in the abovementioned benzo[c]cinnolines.

As the most electronegative substituent, the F atom withdraws electrons from the γ ring and affects the bond lengths and angles of the ring, causing short bonds: $\quad \mathrm{C} 1-\mathrm{C} 2=1.355(4), \quad \mathrm{C} 2-\mathrm{C} 3=$ 1.392 (5) and $\mathrm{C} 3-\mathrm{C} 4=1.370$ (4) \AA; small angles: C2-C1-C14 = 117.7 (3), $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=118.3$ (3), $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=119.3(3)$ and $\mathrm{C} 1-\mathrm{C} 14-\mathrm{C} 5=$ $118.5(3)^{\circ}$; and large angles: $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=124.9$ (3) and $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 14=121 \cdot 3(3)^{\circ}$.

A general conclusion based on the above results is that the type and position of the substituent determines the shape of the benzo[c]cinnoline skeleton.

The author is grateful to the Scientific and Technical Research Council of Turkey (TÜBÍTAK) for financial support, to Dr E. Kılıç, University of Ankara, Turkey, for preparation of the compound, and to Drs C. K. Prout, D. J. Watkin and A. K. Cheetham of the Chemical Crystallography Labora-
tory, University of Oxford, England, for provision of laboratory and computer facilities.

References

Ashby, J., Styles, J. A. \& Paton, D. (1980). Carcinogenesis (NY), 1(1), l-7.
Davies, K. (1983). SNOOPI. Program for drawing crystal and molecular diagrams. Univ. of Oxford, England.
Erlenmeyer, H. (1958). British Patent No. 794,775.
Hoffman, R. (1963). J. Chem. Phys. 39, 1397-1412.
Hökelek, T., Kılıç, E. \& Tüzün, C. (1991a). Acta Cryst. C47, 369-373.
Hökelek, T., Kıliç, E. \& Tüzün, C. (1991b). Acta Cryst. C47, 373-376.
Hökelek, T., Watkin, D. J., Killç, E. \& Tüzün, C. (1990). Acta Cryst. C46, 1027-1029.
Jan, G. (1980). German Patent No. 2,939,259.
Leary, J. A., Lafleur, A. L., Liber, H. L. \& Blemann, K. (1983). Anal. Chem. 55, 758-761.

Matter, M. (1957). US Patent No. 2,778,829.
Meer, H. van der (1972). Acta Cryst. B28, 367-370.
Mulliken, R. S. (1955). J. Chem. Phys. 23, 1833-1840.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Watkin, D. J., Carruthers, J. R. \& Betteridge, D. W. (1985). CRYSTALS. Program for crystal structure solution. Univ. of Oxford, England.

Acta Cryst. (1991). C47, 1434-1438

Structure of Two Complex Salts Formed by Diethylamine and Quinol

By M. M. Mahmoud* and S. C. Wallwork
Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England

(Received 2 August 1990; accepted 25 October 1990)

Abstract

I), Bis(diethylammonium) 1,4-benzenediolate(2 -)-1,4-benzenediol (1/1), $\quad 2 \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+}$.$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}^{2-} . \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}, 2 \mathrm{DEAH}^{+} . \mathrm{Q}^{2-}$. Q (DEA $=$ diethylamine, $\mathrm{Q}=$ quinol), $M_{r}=366 \cdot 5$, monoclinic, $C 2 / c$, a $=12.55$ (1), $\quad b=11.87$ (1), $\quad c=16.69$ (1) $\AA \hat{\text { A }}, \quad \beta=$ $119 \cdot 15(8)^{\circ}, V=2171 \AA^{3}, Z=4, D_{x}=1 \cdot 12 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=0.084 \mathrm{~mm}^{-1}$, $F(000)=800$, room temperature, $R=0 \cdot 148, w R=$ 0.207 for 513 reflections $[I>2 \cdot 5 \sigma(I)]$. (II), Diethylammonium 1,4-benzenediolate($1-$)-1,4-benzenediol (1/1), $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}^{-} . \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}, \quad$ DEAH ${ }^{+} . \mathrm{Q}^{-} . \mathrm{Q}$, $M_{r}=293.36$, triclinic, $P \overline{1}, a=8.77$ (1), $b=7.09(1), c$ $=14.32(1) \AA, \quad \alpha=91 \cdot 0(1), \quad \beta=101 \cdot 2(2), \quad \gamma=$ $114 \cdot 2(1)^{\circ}, V=792 \AA^{3}, Z=2, D_{m}=1 \cdot 20(3), D_{x}=$

^[* Present address: Department of Physics, Al-Mustansiriyah University, Baghdad, Iraq.]

$1.23 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=$ $0.095 \mathrm{~mm}^{-1}, F(000)=316$, room temperature, $R=$ $0.076, w R=0.095$ for 2121 reflections $[I>3 \sigma(I)]$. Both structures are extensively hydrogen bonded. (I) has chains of $\mathrm{Q}, \mathrm{Q}^{2-}, \mathrm{Q}^{\prime}, \mathrm{DEAH}^{+}, \mathrm{Q}^{2-}, \mathrm{DEAH}^{+}$, Q , in which Q^{2-} ions link pairs of successive chains in the \mathbf{b} direction and Q molecules link chains in the c direction. (II) has two independent Q molecules, a Q^{-}ion, and DEAH^{+}ions hydrogen bonded together in a three-dimensional manner.

Introduction. As part of a series of studies of complexes of quinol (1,4-dihydroxybenzene) with nitrogen bases (cf. Mahmoud \& Wallwork, 1979), crystals were prepared by adding diethylamine to solutions of quinol in ether. In different preparations, two types of crystal were obtained, the first (I) having a $1: 1$

[^0]: * Lists of observed and calculated structure factors, anisotropic thermal parameters, H -atom parameters, and bond distances and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53665 (11 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

